C 11 - UNIT I – PHYSICAL WORLD AND MEASUREMENT - SRT 2

Match the following: 1.

Column I		Column II		
Α	J.C. Bose	Р	Inelastic scattering of light by molecules	
В	C.V. Raman	Q	Quantum statistics	
С	M.N. Saha	R	Ultra short radio waves	
D	S.N. Bose	S	Thermal ionization	

$$(2) A - R, B - P, C - S, D - Q$$

$$(4) A - R, B - P, C - Q, D - S$$

Match the following: 2.

Column I		Column II		
А	Electron microscope	Р	Detection of cosmic radio waves	
В	Giant Meter wave Radio Telescope	Q	Magnetic confinement of plasma	
С	Fusion test reactor	R	Population inversion.	
D	LASER	S	Wave nature of electrons	

$$(2) A - S, B - R, C - Q, D - F$$

(3)
$$A - S$$
, $B - R$, $C - P$, $D - Q$ (4) $A - S$, $B - P$, $C - Q$, $D - R$

(4)
$$A-S$$
, $B-P$, $C-Q$, $D-F$

3. Which of the following statements is correct?

- (1) Aero plane is based on Newton's laws of motion and Steam engine on Bernoulli's theorem.
- (2) Hydroelectric power is based on law of thermodynamics and rocket propulsion on Bernoulli's theorem.

www.neetphysicsclasses.in 8885870408 Page 1

	(3) Computers are based on digital logic of electronic circuits, while el generator on Faraday's laws of electromagnetic induction.				
	(4) Nuclear reacto interference.	r is based on la	w of thermodyr	namics and SONAR on optical	
4.	Arrange the follow	Arrange the following basic forces in the increasing order of relative strength			
	a. Gravitational force. Weak nuclear for		b. Electromagnetic forced. Strong nuclear force		
	(1) a, b, c, d	(2) a, c ,b, d	(3) d ,c, b, a	(4) d, a, b, c	
5.	The solid angle subtended by the periphery of an area 1cm ² at a point symmetrically at a distance of 5 cm from the area is		-		
	(1) 2 x 10 ⁻² sterdian	า	(2) 4 x 10 ⁻² ster	dian	
	(3) 6 x 10 ⁻² sterdiar	1	(4) 8 x 10 ⁻² ster	dian	
6.	If 'h' is planks constant and 'l' is moment of inertia then the dimensions of $\frac{h}{l}$ a same as those of			then the dimensions of $\frac{h}{I}$ are	
	(1) frequency	(2) velocity	(3) angular moi	mentum (4) time	
7. The position of a particle at time t is given by the relation,					
	$x(t)=\left(rac{v_0}{lpha} ight)$ $(1-e^{-lpha t})$, where v_0 is a constant and $lpha>0$. The dimensions of v_0				
	and α are respective	vely			
	(1) $M^0L^1T^{-1}$ and T	-1	(2) $M^0L^1T^0$ and	$d T^{-1}$	
	(3) $M^0L^1T^{-1}$ and L	T^{-2}	(4) $M^0L^1T^{-1}$ ar	nd T	
8.	The dimensional fo	dimensional formula for molar thermal capacity is same as that of			
	(1) gas constant		(2) Stefan's con	nstant	
	(3) Boltzmann cons	tant	(4) specific hea	t	
9.	Assertion: Dimens	ional constants	s are the	quantities whose values are	

constant.

Reason: Dimensional constants are dimensionless

- (1) If both assertion and reason ore true and the reason is the correct explanation of the assertion.
- (2) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (3) If assertion is true but reason is false.
- (4) If the assertion and reason both are false.
- 10. Statement- 1: Velocity gradient has the dimensions of frequency. Statement- 2: Velocity gradient is rate of change of velocity with displacement.
 - (A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation of Statement-1.
 - (B) Statement-1 is true, Statement-2 is true but Statement-2 is not correct explanation of Statement-1.
 - (C) Statement-1 is true, but Statement-2 is false.
 - (D) Statement-1 is false, but Statement-2 is true.
 - (1) A (2) B(4) D
- A quantity X is given by $\in_0^- L^{\frac{\Delta V}{\Delta t}}$ where \in_0^- is the permittivity of free space, L is a 11. length, ΔV is potential difference and Δt is time interval. The dimensional formula for X is the same as that of
 - (3) voltage (1) resistance (2) charge (4) current
- Which of the following represents the unit volt? **12.**
 - (1) joule (second)⁻¹

(2) watt (ampere)⁻¹

(3) watt(coulomb)⁻¹

(4) coulomb(joule)⁻¹

13. If C and L denote capacitance and inductance respectively, then the dimensions of LC are

(1) $M^0L^0T^0$

(2) $M^0L^0T^2$ (3) $M^2L^0T^2$

 $(4) MLT^2$

According to Joule's law of heating, heat produced in a current carrying 14. resistor is given by the equation $H = I^2Rt$, where Iis current, R is resistance and t

	respectively then error in the measurement of H is					
	(1) + 17%	(2) ±16%	(3) \pm 19%	$(4) \pm 25\%$		
15.	A physical qua	intity 'a' can be do	etermined by i	measuring the parameters b, c, d		
	and e using the relation $a=\frac{b^{\alpha}c^{\beta}}{d\gamma_{e}\delta}$. If the maximum errors in the measurement of b,					
	c, d and e are $b_1\%$, $c_1\%$, $d_1\%$ and $e_1\%$ then the maximum error in the value of 'a' determined by an experiment is					
	(1) $(b_1 + c_1 + d_1)$	+ e ₁) %	(2) $(b_1 + c_1 + c_2)$	$-d_1-e_1$) %		
	(3) $(\alpha b_1 + \beta c_1 - \gamma d_1 - \delta e_1)\%$		(4) $(\alpha b_1 + \beta c_1 + \gamma d_1 + \delta e_1)\%$			
16.	The respective 0.0006032 are		ificant figures	for the numbers 6.320, 6.032,		
	(1) 3, 4, 8	(2) 4, 4, 8	(3) 4, 4, 4	(4) 4, 3, 4		
17.	If L = 2.331 cm L + B =	, B = 2.1cm, then w	vith due regard	I to significant figures the value of		
	(1) 4.431cm	(2) 4.43 cm	(3) 4.4 cm	(4) 4cm		
18.	Two rods with lengths 12.321cm and 10.3 cm are placed side by side. The difference in their lengths is					
		(2) 2.0 cm	(3) 2 cm	(4) 2.025 cm		
19.	The mass of a body is measured as 2.00 x 10 ³ Kg. Its significant figures are					
	(1) 6	(2) 3	(3) 1	(4) 2		
20.	The circular scale of a screw gauge has 200 divisions. When it is given 4 complete					
	rotations, it moves through 2mm. The least count of screw gauge is					
	(1) 0.25×10^{-3}	² cm	(2) $0.25 \times$	10^{-3} cm		
	(3) 0.001cm		(4) 0.001m	(4) 0.001mm		
21.	Who invented	the cyclotron?				
	(1) James Chad	wick	(2) James C	Clerk Maxwell		

(3) Michael Faraday

(4) Ernest Orlando Lawrence

(2) Potential difference

	(3) Momentum		(4) Energy	
23.	$\frac{1}{2}\epsilon_0 E^2$ are	,		eld, then the dimensions of
	(1) MLT ¹	(2) ML^2T^{-2}	(3) $ML^{-1}T^{-2}$	(4) ML^2T^{-1}
24.				ittivity of free space, the
	(1) LT^{-1}	(2) $L^{-2}T^2$	(3) $M^{-1}L^{-3}Q^2T^2$	(4) $M^{-1}L^{-3}I^2T^2$
25.	In an experiment	the percentage er	ror in the measurer	ment of current is 4% and in
	the measuremer	nt of voltage is 2%	. The percentage e	rror in the measurement of
	power will be			
	(1) 4	(2) 8	(3) 2	(4) 6
		:10		

electron volt is a unit of

(1) Charge

22.