

NEET-II (2016) TEST PAPER WITH ANSWER & SOLUTIONS (HELD ON SUNDAY 24th JULY, 2016)

- **1.** Which one of the following generates new genetic combinations leading to variation ?
 - (1) Sexual reproduction
 - (2) Nucellar polyembryony
 - (3) Vegetative reproduction
 - (4) Parthenogenesis

Ans. (1)

2. Match **column-I** with **column-II** and select the correct option using the codes given below :

	Column-I	Column-II		
(a)	Pistils fused together	(i)	Gametogenesis	
(b)	Formation of gametes	(ii)	Pistillate	
(c)	Hyphae of higher Ascomycetes	(iii)	Syncarpous	
(d)	Unisexual female flower	(iv)	Dikaryotic	

	a	b	с	d
(1)	i	ii	iv	iii
(2)	iii	i	iv	ii
(3)	iv	iii	i	ii
(4)	ii	i	iv	iii

Ans. (2)

- **3.** In majority of angiosperms :
 - (1) reduction division occurs in the mgaspore mother cells
 - (2) a small central cell is present in the embryo sac
 - (3) egg has a filiform apparatus
 - (4) there are numerous antipodal cells

Ans. (1)

- **4.** Pollination in water hyacinth and water lily is brought about by the agency of :
 - (1) birds (2) bats
 - (3) water (4) insects or wind

Ans. (4)

- 5. The ovule of an angiosperm is technically equivalent to :
 - (1) megaspore mother cell
 - (2) megaspore
 - (3) megasporangium
 - (4) megasporophyll

Ans. (3)

- **6.** Taylor conducted the experiment to prove semiconservative mode of chromosome replication on :
 - (1) Drosophila melanogaster
 - (2) *E. coli*
 - (3) Vinca rosea
 - (4) Vicia faba

Ans. (4)

- **7.** The mechanism that causes a gene to move from one linkage group to another is called :
 - (1) Translocation
 - (2) Crossing-over
 - (3) Inversion
 - (4) Duplication

Ans. (1)

- 8. The equivalent of a structural gene is :
 - (1) Operon
 - (2) Recon
 - (3) Muton
 - (4) Cistron

Ans. (4)

- 9. A true breeding plant is :
 - (1) near homozygous and produces offspring of its own kind
 - (2) always homozygous recessive in its genetic constitution
 - (3) one that is able to breed on its own
 - (4) produced due to cross-pollination among unrelated plants

Ans. (1)

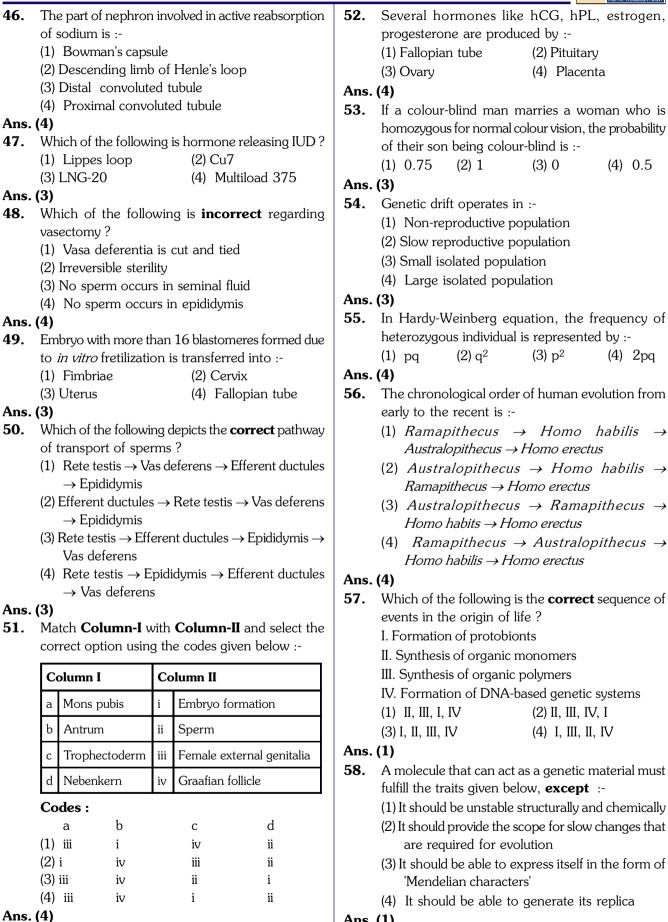
- **10.** Which of the following rRNAs acts as structural RNA as well as ribozyme in bacteria ?
 - (1) 23 S rRNA (2) 5.8 S rRNA
 - (3) 5 S rRNA (4) 18 S rRNA

Ans. (1)

- 11. Stirred-tank bioreactors have been designed for :
 (1) availability of oxygen throughout the process
 (2) ensuring anaerobic conditions in the culture vessel
 (3) purification of product
 - (4) addition of preservatives to the product

Ans. (1)

- **12.** A foreign DNA and plasmid cut by the same restriction endonuclease can be joined to form a recombinant plasmid using :
 - (1) Polymerase-III(2) Ligase(3) Eco RI(4) Taq po
 - (4) *Taq* polymerase


Ans. (2)

13.	Which of the following is not a com	ponent of	21.	Red list contains data or information on :		
	downstream processing ?	•		(1) threatened species		
	(1) Preservation (2) Expressio	n		(2) marine vertebrates only		
	(3) Separation (4) Purification			(3) all economically important plants		
Ans.				(4) plants whose products are in international trade		
14.	Which of the following restriction enzyme	e produces	Ans.			
14.	blunt ends ?	s produces	22.	Which one of the following is wrong for fungi?		
	(1) <i>Xho</i> I (2) <i>Hind</i> III			(1) They are heterotrophic		
	., .,			(2) They are both unicellular and multicellular		
	(3) <i>Sal</i> I (4) <i>Eco</i> RV			(3) They are eukaryotic		
Ans.			Ans.	(4) All fungi possess a purely cellulosic cell wall		
15.	Which kind of therapy was given in 199		23 .	Methanogens belong to :		
	year old girl with adenosine deamina	ase (ADA)	20.	(1) Dinoflagellates (2) Slime moulds		
	deficiency?			(3) Eubacteria (4) Archaebacteria		
	(1) Immunotherapy (2) Radiation		Ans.			
	(3) Gene therapy (4) Chemothe	erapy	24.	Select the wrong statement :		
Ans.	(3)			(1) Diatoms are chief producers in the oceans		
16.	How many hot spots of biodiversity in the been identified till date by Norman My			(2) Diatoms are microscopic and float passively in water		
	(1) 34 (2) 43 (3) 17	(4) 25		(3) The walls of diatoms are easily destructible		
Ans.	(1)			(4) 'Diatomaceous earth' is formed by the cell walls		
17.	The primary producers of the	deep-sea		of diatoms.		
	hydrothermal vent ecosystem are :		Ans. 25.	(5) The lable of a herbarium shet does not carry		
	(1) Blue-green algae		23.	information on :		
	(2) Coral reefs			(1) Local names (2) height of the plant		
	(3) Green algae			(3) date of collection (4) name of collector		
	(4) Chemosynthetic bacteria		Ans.			
Ans.			26 .	Conifers are adapated to tolerate extreme		
18.	Which of the following is correct for	r-selected		environmental conditions because of :		
	species ?	r concerca		(1) thick cuticle (2) presence of vessels		
	(1) Small number of progeny with small size			(3) broad hardy leaves (4) superficial stomata		
	(2) Small number of progeny with large size			(1) Which one of the following statements is wrong ?		
	(3) Large number of progeny with small size			Which one of the following statements is wrong?(1) Agar-agar is obtained from <i>Gelidium</i> and		
	(4) Large number of progeny with large			Gracilaria		
Ans.		C SILC		(2) <i>Laminaria</i> and <i>Sargassum</i> are used as food		
19.	If '+' sign is assigned to beneficial interact	tion '_' sign		(3) Algae increase the level of dissolved oxygen in		
17.	to detrimental and '0' sign to neutral in	-		the immediate environment		
	then the population interaction represe			(4) Algin is obtained from red algae, and		
	'-' refers to :			carrageenan from brown algae.		
	(1) Commensalism (2) Parasitism	ı	Ans.	· /		
	(3) Mutualism (4) Amensalis		28.	The term 'polyadelphous' is related to :- (1) Corolla (2) Calyx		
Ans.				(3) Gynoecium (4) Androecium		
20 .	Which of the following is correctly ma	atched ?	Ans.			
20.	(1) Parthenium hysterophorus– Threat to		29 .	How many plants among <i>Indigofera, Sesbania,</i>		
	(2) Stratification – Population	orourversity	-	Salvia, Allium, Aloe, mustard, groundnut, radish,		
	- · ·			gram and turnip have stamens with different lengths		
	(3) Aerenchyma – <i>Opuntia</i>			in their flowers ?		
•	(4) Age pyramid – Biome			(1) Five (2) Six (3) Three (4) Four		
Ans.	(1)		Ans.	(4)		
2 -						

30 .	Radial symmetry is found	d in the flowers of :-	39.	Which of	the following bi	omolecules	is common to
	(1) Pisum	(2) <i>Cassia</i>			on-mediated		wn of fats,
	(3) Brassica	(4) Trifolium		carbohyd	rates and prote	ins ?	
Ans.	(3)			(1) Pyruv	ric acid		
31.	Free-central placentation	n is found in :-		(2) Acetyl	CoA		
	(1) Brassica	(2) Citrus		(3) Glucos	se-6-phosphate		
	(3) Dianthus	(4) Argemone		(4) Fructo	ose 1,6-bisphos	phate	
Ans.			Ans.	(2)			
32.	Cortex is the region fou	nd between :-	40.	A few dro	ps of sap were o	collected by	cutting across
	(1) Endodermis and pith			a plant st	em by a suitab	le method.	The sap was
	(2) Endodermis and vaso			tested che	emically. Which	one of the	following test
	(3) Epidermis and stele			results inc	dicates that it is	s phloem sa	ap?
	(4) Pericycle and endod	ermis		(1) Low 1	refractive index	(2) Abser	ice of sugar
Ans.	-			(3) Acidic		(4) Alkal	ine
33 .	The balloon-shaped stru	ctures called tuloses	Ans.	(4)			
55.		em parenchyma cells into	41.	You are	given a tissue	e with its	potential for
	vessels			differentia	ation in an artifi	cial culture	. Which of the
		ent of sap through xylem		-	pairs of hormo		
	vessels				o secure shoots		roots ?
	(3) Originate in the lume	n of vessels			and abscisic a		
	(4) Characterize the sap				rellin and abscis	sic acid	
Ans.		wood		(3) IAA ai	nd gibberellin		
34 .	A non-proteinaceous en:	zumo is ·-			and cytokinin		
01.	(1) Ligase	(2) Deoxyribonuclease	Ans.	• •			
	(3) Lysozyme	(4) Ribozyme	42.	Phytochr	ome is a :-		
Ans.		(+) moozyme		(1) Lipop			noprotein
35.	Select the mismatch :-			(3) Flavop	orotein	(4) Glycc	protein
55.			Ans.	. (2)			
	(1) Protists-Eukaryotes(2) Methanogens-Prokary	votoo	43.	Which is	essential for the	e growth o	f root tip ?
	(3) Gas vacuoles-Green			(1) Ca	(2) Mn	(3) Zn	(4) Fe
			Ans.	(1)			
A	(4) Large central vacou	ies - Animai Celis	44.	The proce	ess which makes	major diffe	rence between
Ans.				C_3 and C	₄ plants is :-		
36.	Select the wrong staten			(1) Photo	prespiration	(2) Respir	ration
	(1) Cyanobacteria lack	-		(3) Glycol	ysis	(4) Calvi	n cycle
	(2) <i>Mycoplasma</i> is a wall	-	Ans.	(1)			
		ade up of peptidoglycan.	45.	Which or	ne of the follo	wing state	ments in not
		mainly involved in motility		correct?			
•	of bacterial cells			· · -	ato, banana and		-
Ans.		1 1 1 4			he internodes pr		
37.	-	ng hydrolytic enzymes is :-			hyacinth, grow	-	-
	(1) Ribosome	(2) Mesosome			s oxygen from wa	ater that lea	ds to the death
_	(3) Lysosome	(4) Microsome		of fish			
Ans.		• • •			ing produced by	the asexua	l reproduction
38.		synthesis takes place in:-			alled clone		1
	(1) G_2 phase	(2) M phase			oscopic, motil		
	(3) S phase	(4) G ₁ phase	A		ures are called	200spores.	
Ans.	(3)		Ans.	(1)			

Ans. (1)

3	ALLEN
hath to surrow	CAREER INSTITUTE

- DNA-dependent RNA polymerase catalyzes **59**. transcription on one strand of the DNA which is called the :-(2) Antistrand
 - (1) Alpha strand
 - (3) Template strand (4) Coding strand

Ans. (3)

- **60.** Interspecific hybridization is the mating of :-
 - (1) Superior males and females of different breeds (2) More closely related individuals within same breed
 - for 4-6 generations
 - (3) Animals within same breed without having common ancestors
 - (4) Two different related species

Ans. (4)

- **61.** Which of the following is **correct** regarding AIDS causative agent HIV ?
 - (1) HIV is unenveloped retrovirus.
 - (2) HIV does not escape but attacks the aguired immune response.
 - (3) HIV is enveloped virus containing one molecule of single-stranded RNA and one molecule of reverse transcriptase.
 - (4) HIV is enveloped virus that contains two identical molecules of single-stranded RNA and two molecules of reverse transcriptase.

Ans. (4)

62. Among the following edible fishes, which one is a marine fish having rich source of omega-3 fatty acids? (1) Mrigala (2) Mackerel (3) Mystus (4) Mangur

Ans. (2)

Match Column – I with Column–II and select the **63**. correct option using the codes given below

	Column-I				Column-II	
	(a)	Citric acid		(i)	Trichoderma	
	(b)	Cyclosporin A		(ii)	Clostridium	
	(c)	Statins		(iii)	Aspergillus	
	(d)	Butyric acid		(iv)	Monascus	
	Codes :					
		a b		С	d	
	(1)	i	iv	ii	iii	
	(2)	iii	iv	i	ii	
	(3)	iii	i	ii	iv	
	(4)	iii i		iv	ii	
Ans. (4)					

Biochemical Oxygen Demand (BOD) may not be **64**. a good index for pollution for water bodies receiving effluents from :-

- (1) Petroleum industry
- (2) Sugar industry
- (3) Domestic sewage
- (4) Dairy industry

Ans. (1)

- **65**. The principle of competitive exclusion was stated by :-
 - (1) MacArthur
 - (2) Verhulst and Pearl
 - (3) C. Darwin
 - (4) G.F. Gause

Ans. (4)

- 66. Which of the following National Parks is home to the famous musk deer or hangul?
 - (1) Eaglenest Wildlife Sanctuary, Arunachal Pradesh
 - (2) Dachigam National Park, Jammu & Kashmir
 - (3) Keibul Lamjao National Park, Manipur
 - (4) Bandhavgarh National Park, Madhya Pradesh

Ans. (2)

- **67**. A lake which is rich in organic waste may result in:-
 - (1) Increased population of fish due to lots of nutrients.
 - (2) Mortality of fish due to lack of oxygen
 - (3) Increased population of aquatic organisms due to minerals
 - (4) Drying of the lake due to algal bloom

Ans. (2)

68. The highest DDT concentration in aquatic food chain shall occur in :-

2) eel

(3) phytoplankton (4) seagull

Ans. (4)

- **69**. Which of the following sets of diseases is caused by bacteria?
 - (1) Tetanus and mumps
 - (2) Herpes and influenza
 - (3) Cholera and tetanus
 - (4) Typhoid and smallpox

Ans. (3)

70. Match **Column–I** with **Column–II** for housefly classification and select the correct option using the codes given below :

Column-I			Column-II
a	Family	(i)	Diptera
b	Order	(ii)	Arthropoda
с	Class	(iii)	Muscidae
d	Phylum	(iv)	Insecta

Codes :

	а	b	С	d
(1)	iv	iii	ii	i
(2)	iv	ii	i	iii
(3)	iii	i	iv	ii
(4)	iii	ii	iv	i

Ans. (3)

- **71.** Choose the **correct** statement.
 - (1) All reptiles have a three-chambered heart.
 - (2) All pisces have gills covered by an operculum.
 - (3) All mammals are viviparous.
 - (4) All cyclostomes do not possess jaws and paired fins.

Ans. (4)

- **72.** Study the four statements (A–D) given below and select the two correct ones out of them :
 - (A) Definition of biological species was given by Ernst Mayr.
 - (B) Photoperiod does not affect reproduction in plants.
 - (C) Binomial nomenclature system was given by R.H. Whittaker.
 - (D) In unicellular organisms, reproduction is synonymous with growth.

The two correct statements are

(1) A and D	(2) A and B
(3) B and C	(4) C and D

Ans. (1)

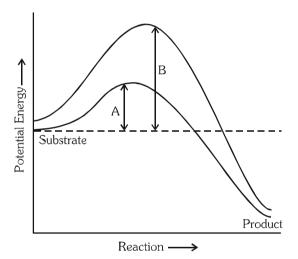
73. In male cockroaches, sperms are stored in which part of the reproductive system?

(3) Seminal vesicles (4) Mushroom glands

Ans. (3)

- 74. Smooth muscles are :-
 - (1) Involuntary, cylindrical, striated
 - (2) Voluntary, spindle-shaped, uninucleate
 - (3) Involuntary, fusiform, non-striated
 - (4) Voluntary, multinucleate, cylindrical

Ans. (3)


- **75.** Oxidative phosphorylation is :-
 - (1) Addition of phosphate group to ATP.
 - (2) Formation of ATP by energy released from electrons removed during substrate oxidation.
 - (3) Formation of ATP by transfer of phosphate group from a substrate to ADP
 - (4) Oxidation of phosphate group in ATP

Ans. (2)

- **76.** Which of the following is the least likely to be involved in stabilizing the three–dimensional folding of most proteins?
 - (1) Hydrophobic interaction
 - (2) Ester bonds
 - (3) Hydrogen bonds
 - (4) Electrostatic interaction

Ans. (2)

77. Which of the following describes the given graph **correctly**?

- (1) Endothermic reaction with energy A in absence of enzyme and B in presence of enzyme
- (2) Exothermic reaction with energy A in absence of enzyme and B in presence of enzyme
- (3) Endothermic reaction with energy A in presence of enzyme and B in absence of enzyme
- (4) Exothermic reaction with energy A in presence of enzyme and B in absence of enzyme.

Ans. (4)

78. When cell has stalled DNA replication fork, which checkpoint should be predominantly activated?

(1) M	(2) Both G ₂ /M and M
(3) G ₁ /S	(4) G ₂ /M
Ans. (3)	

79. Match the stages of meiosis in **Column–I** to their characteristic features in **Column–II** and select the correct option using the codes given below :

Column-I		Column-II	
a	Pachytene	i	Pairing of homologous chromosomes
b	Metaphase-I	ii	Terminalization of chiasmata
с	Diakinesis	iii	Crossing over takes place
d	Zygotene	iv	Chromosomes align at equatorial plate

Codes :

	а	b	С	d
(1)	ii	iv	iii	i
(2)	iv	iii	ii	i
(3)	iii	iv	ii	i
(4)	i	iv	ii	iii
~ .				

Ans. (3)

- **80.** Which hormones do stimulate the production of pancreatic juice and bicarbonate?
 - (1) Cholecystokinin and secretin
 - (2) Insulin and glucagon
 - (3) Angiotensin and epinephrine
 - (4) Gastrin and insulin

Ans. (1)

- **81.** The partial pressure of oxygen in the alveoli of the lungs is :-
 - (1) Less than that in the blood
 - (2) Less than that of carbon dioxide
 - (3) Equal to that in the blood
 - (4) More than that in the blood

Ans. (4)

- **82.** Choose the **correct** statement.
 - Photoreceptors in the human eye are depolarized during darkness and become hyperpolarized in response to the light stimulus.
 - (2) Receptors do not produce graded potentials.
 - (3) Nociceptors respond to changes in pressure.
 - (4) Meissner's corpuscles are thermo receptors.

Ans. (1)

- 83. Graves' disease is caused due to :-
 - (1) Hyposecretion of adrenal gland
 - (2) Hypersecretion of adrenal gland
 - (3) Hyposecretion of thyroid gland
 - (4) Hypersecretion of thyroid gland

Ans. (4)

- **84.** Name the ion responsible for unmasking of active sites for myosin for cross–bridge activity during muscle contraction.
 - (1) Sodium (2) Potassium
 - (4) Magnesium

Ans. (3)

(3) Calcium

- **85.** Name the blood cells, whose reduction in number can cause clotting disorder, leading to exceassive loss of blood from the body.
 - (1) Neutrophils (2) Thrombocytes
 - (3) Erythrocytes (4) Leucocytes

Ans. (2)

- **86.** Name a peptide hormone which acts mainly on hepatocytes, adipocytes and enhances cellular glucose uptake and utilization.
 - (1) Secretin (2) Gastrin
 - (3) Insulin (4) Glucagon

Ans. (3)

- **87.** Osteoporosis, an age-related disease of skeletal system, may occur due to :-
 - (1) Decreased level of estrogen
 - (2) Accumulation of uric acid leading to inflammation of joints.
 - (3) Immune disorder affecting neuro-muscular junction leading to fatigue.
 - (4) High concentration of Ca^{++} and Na^{+} .

Ans. (1)

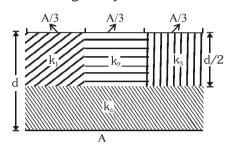
- **88.** Serum differs from blood in :-
 - (1) Lacking clotting factors
 - (2) Lacking antibodies
 - (3) Lacking globulins
 - (4) Lacking albumins

Ans. (1)

- **89.** Lungs do not collapse between breaths and some air always remains in the lungs which can never be expelled because :-
 - (1) There is a positive intrapleural pressure
 - (2) Pressure in the lungs is higher than the atomospheric pressure.
 - (3) There is a negative pressure in the lungs.
 - (4) There is a negative intrapleural pressure pulling at the lung walls

Ans. (4)

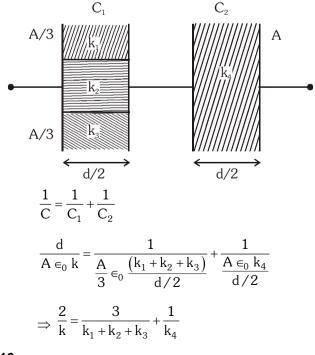
- **90.** The posterior pituitary gland is **not** a 'true' endocrine gland because :-
 - (1) It is under the regulation of hypothalamus
 - (2) It secretes enzymes
 - (3) It is provided with a duct
 - (4) It only stores and releases hormones


Ans. (4)

CODE-YY

NEET-II (2016) TEST PAPER WITH ANSWER & SOLUTIONS (HELD ON SUNDAY 24th JULY, 2016)

91. A parallel-plate capacitor of area A, plate separation d and capacitance C is filled with four dielectric materials having dielectric constants k₁, k₂, k₃ and k₄ as shown in the figure below. If a single dielectric material is to be used to have the same capacitance C in this capacitor, then its dielectric constant k is given by :-


(1)
$$\frac{2}{k} = \frac{3}{k_1 + k_2 + k_3} + \frac{1}{k_4}$$

(2) $\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \frac{3}{2k_4}$ (3) $k = k_1 + k_2 + k_3 + 3k_4$

(4)
$$k = \frac{2}{3} (k_1 + k_2 + k_3) + 2k_4$$

Ans. (1)

Sol. Circuit can be redrawn as

92. The potential difference $(V_A - V_B)$ between the points A and B in the given figure is :-

Ans. (2)

Sol.
$$A \stackrel{2\Omega}{\longrightarrow} \stackrel{3V}{\longrightarrow} \stackrel{1\Omega}{\longrightarrow} \stackrel{0}{\longrightarrow} \stackrel{0}{\rightarrow} \stackrel{0}{\rightarrow} \stackrel{0}{\rightarrow} \stackrel{$$

93. A filament bulb (500 W, 100 V) is to be used in a 230 V main supply. When a resistance R is connected in series, it works perfectly and the bulb consumes 500 W. The value of R is :-

(1)
$$26 \Omega$$
 (2) 13Ω (3) 230Ω (4) 46Ω
Ans. (1)

Sol.

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
100 \\ V \\
500 \\ W \\
\end{array}\\
\hline \\
230 \\ V \\
\end{array}\\
R_{bulb} = \frac{V^2}{P} = \frac{100^2}{500} = 20 \ \Omega \\
\end{array}\\
\begin{array}{c}
\begin{array}{c}
\end{array}\\
R_{bulb} = \frac{V^2}{P} = \frac{100^2}{500} = 20 \ \Omega \\
\end{array}\\
\begin{array}{c}
\begin{array}{c}
\end{array}\\
According to question \\
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\hline \\
R_{bulb} = \frac{130}{100} \\
\end{array}\\
\end{array} = \frac{130}{100} \\
\end{array}$$

Bulb

94. A long wire carrying a steady current is bent into a circular loop of one turn. The magnetic field at the centre of the loop is B. It is then bent into a circular coil of n turns. The magnetic field at the centre of this coil of n turns will be :-

(1)
$$2nB$$
 (2) $2n^2B$ (3) nB (4) n^2B
Ans. (4)

Sol. Since
$$\ell = 2\pi R = n(2\pi r) \Rightarrow r = \frac{R}{n}$$

For one turn $B = \frac{\mu_0 i}{2R}$ and
For n turn $B' = \frac{\mu_0 ni}{2r} \Rightarrow B' = \frac{\mu_0 n^2 i}{2R} = n^2 B$

95. A bar magnet is hung by a thin cotton thread in a uniform horizontal magnetic field and is in equilibrium state. The energy required to rotate it by 60° is W. Now the torque required to keep the magnet in this new position is :-

(1)
$$\frac{\sqrt{3}W}{2}$$
 (2) $\frac{2W}{\sqrt{3}}$

(3)
$$\frac{W}{\sqrt{3}}$$
 (4) $\sqrt{3} W$

Ans. (4)

Sol. $\tau = PE \sin 60^{\circ}$ (1) $W = PE (1 - \cos 60^{\circ})$ (2) From (1) and (2)

$$\frac{\tau}{W} = \frac{\sqrt{3}/2}{1/2} \Rightarrow \tau = W\sqrt{3}$$

96. An electron is moving in a circular path under the influence of a transverse magnetic field of 3.57×10^{-2} T. If the value of e/m is 1.76×10^{11} C/kg, the frequency of revolution of the electron is :-

(1) 62.8 MHz	(2) 6.28 MHz
(3) 1 GHz	(4) 100 MHz

Ans. (3)

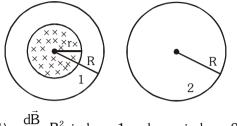
Sol. $f = \frac{eB}{2\pi m}$

$$f = \frac{1.76 \times 10^{11} \times 3.57 \times 10^{-2}}{2 \times 3.14}$$

f = 10⁹ Hz or 1 GHz

- **97.** Which of the following combinations should be selected for better tuning of an L-C-R circuit used for communication ?
 - (1) $R = 15 \Omega$, L = 3.5 H, $C = 30 \mu F$ (2) $R = 25 \Omega$, L = 1.5 H, $C = 45 \mu F$ (3) $R = 20 \Omega$, L = 1.5 H, $C = 35 \mu F$ (4) $R = 25 \Omega$, L = 2.5 H, $C = 45 \mu F$

Ans. (1)


Sol. For Better tuning, Q-factor must be high.

$$\therefore Q = \frac{\omega_{o}L}{R} = \frac{1}{\sqrt{LC}} \left(\frac{L}{R}\right) = \frac{1}{R} \sqrt{\frac{L}{C}}$$

 $R \mbox{ and } C \mbox{ should be small and } L \mbox{ should be high}.$

98. A uniform magnetic field is restricted within a region of radius r. The magnetic field changes with time

at a rate $\frac{d\vec{B}}{dt}$. Loop 1 of radius R > r encloses the region r and loop 2 of radius R is outside the region of magnetic field as shown in the figure below. Then the e.m.f. generated is :-

- (1) $-\frac{d\vec{B}}{dt}\pi R^2$ in loop 1 and zero in loop 2
- (2) $-\frac{dB}{dt}\pi r^2$ in loop 1 and zero in loop 2

(4)
$$-\frac{d\vec{B}}{dt}\pi r^2$$
 in loop 1 and $-\frac{d\vec{B}}{dt}\pi r^2$ in loop 2

Ans. (2) Sol. For Loop 1

$$\varepsilon_{\text{ind}} = -A\left(\frac{d\vec{B}}{dt}\right)\cos 0^\circ = -\pi r^2 \left(\frac{d\vec{B}}{dt}\right)$$

For Loop 2,
$$\varepsilon_{ind} = 0$$
 as no flux linkage
99. The potential differences across the resistance, capacitance and inductance are 80 V, 40 V and 100 V respectively in an L-C-R circuit. The power

100 V respectively in an L-C-R circuit. The powefactor of this circuit is :-(1) 0.8(2) 1.0(3) 0.4(4) 0.5

Ans. (1)

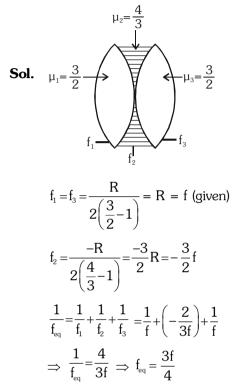
Sol.
$$\tan \phi = \frac{V_L - V_C}{V_R} = \frac{100 - 40}{80} = \frac{3}{4}$$
 or $\phi = 37^\circ$

Power factor =
$$\cos \phi = \cos 37^\circ = \frac{4}{5}$$
 or 0.8

100. A 100 Ω resistance and a capacitor of 100 Ω reactance are connected in series across a 220 V source. When the capacitor is 50% charged, the peak value of the displacement current is :-

(1) 4.4 A (2)
$$11\sqrt{2}$$
 A (3) 2.2 A (4) 11 A
Ans. (3)

Sol.
$$(i_d)_{max} = (i_c)_{max} = i_0 = \frac{\varepsilon_0}{Z} = \frac{220\sqrt{2}}{\sqrt{100^2 + 100^2}}$$


$$\Rightarrow (i_{d})_{max} = \frac{220\sqrt{2}}{100\sqrt{2}} = 2.2 \text{ A}$$

As we are asked amplitude of displacement current. So, need not worry about charge on capacitor.

101. Two identical glass ($\mu_g = 3/2$) equiconvex lenses of focal length f each are kept in contact. The space between the two lenses is filled with water ($\mu_w = 4 / 3$). The focal length of the combination is :-

(1) 4f/3 (2) 3f/4 (3) f/3 (4) f

Ans. (2)

102. An air bubble in a glass slab with refractive index 1.5 (near normal incidence) is 5 cm deep when viewed from one surface and 3 cm deep when viewed from the opposite face. The thickness (in cm) of the slab is :-

(3) 8

(2) 16

(1) 12 Ans. (1)

Sol.

$$H_{R_{1}} - H_{R_{2}} - H_{R_{2}}$$

103. The interference pattern is obtained with two coherent light sources of intensity ratio n. In the

$$\begin{array}{l} \text{interference pattern, the ratio } \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \text{ will be :-} \\ (1) \ \frac{\sqrt{n}}{(n+1)^2} \\ (3) \ \frac{\sqrt{n}}{n+1} \\ \text{(4) } \ \frac{2\sqrt{n}}{n+1} \\ \text{Ans. (4)} \\ \text{Sol. Let } \ \frac{I_1}{I_2} = \frac{n}{1} \\ \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{\left(\sqrt{I_1} + \sqrt{I_2}\right)^2 - \left(\sqrt{I_1} - \sqrt{I_2}\right)^2}{\left(\sqrt{I_1} + \sqrt{I_2}\right)^2 + \left(\sqrt{I_1} - \sqrt{I_2}\right)^2} = \frac{4\sqrt{I_1I_2}}{2(I_1 + I_2)} \\ \text{Dividing numerator and denominator by } I_2 \\ \text{required ratio } = \frac{2\sqrt{I_1/I_2}}{\left(\frac{I_1}{I_2} + 1\right)} = \frac{2\sqrt{n}}{n+1} \end{array}$$

- **104.** A person can see clearly objects only when they lie between 50 cm and 400 cm from his eyes. In order to increase the maximum distance of distinct vision to infinity, the type and power of the correcting lens, the person has to use, will be :-
 - (1) concave, 0.2 diopter
 - (2) convex, + 0.15 diopter
 - (3) convex, + 2.25 diopter
 - (4) concave, 0.25 diopter

Ans. (4)

(4) 10

Sol. As we want to correct myopia. So, far point must go to infinity.

v = -4 m, u = -∞, P = ?
P =
$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} = \frac{1}{-4} - \frac{1}{\infty} = -0.25 \text{ D}$$

(-) implies concave mirror

105. A linear aperture whose width is 0.02 cm is placed immediately in front of a lens of focal length 60 cm. The aperture is illuminated normally by a parallel **beam of wavelength 5 × 10**⁻⁵ cm. The distance of the first dark band of the diffraction pattern from the centre of the screen is :-

Ans. (2)

Sol. f = D = 60 cm For first minima,

$$y = \frac{\lambda D}{a} = \frac{5 \times 10^{-7} \times 60}{2 \times 10^{-2} \times 10^{-2}} = \frac{5 \times 10^{-3} \times 60}{2} = 0.15 \text{ cm}$$

106. Electrons of mass m with de-Broglie wavelength λ fall on the target in an X-ray tube. The cutoff wavelength (λ_0) of the emitted X-ray is :-

(1)
$$\lambda_0 = \frac{2m^2c^2\lambda^3}{h^2}$$
 (2) $\lambda_0 = \lambda$
(3) $\lambda_0 = \frac{2mc\lambda^2}{h}$ (4) $\lambda_0 = \frac{2h}{mc}$

Ans. (3)

Sol.
$$\lambda = \frac{h}{p} \implies p = \frac{h}{\lambda}$$

 $E = \frac{p^2}{2m} = \frac{h^2}{2m\lambda^2}$
Also in X-ray $E = \frac{hc}{\lambda}$

$$\therefore \quad \frac{hc}{\lambda_0} = \frac{h^2}{2m\lambda^2} \Longrightarrow \lambda_0 = \frac{2mc\lambda^2}{h}$$

107. Photons with energy 5 eV are incident on a cathode C in a photoelectric cell. The maximum energy of emitted photoelectrons is 2 eV. When photons of energy 6 eV are incident on C, no photoelectrons will reach the anode A, if the stopping potential of A relative to C is :-

Ans. (2)

Sol. $eV_s = \frac{1}{2}mv_{max}^2 = hv - \phi_0$ $2 = 5 - \phi_0 \Rightarrow \phi_0 = 3 eV$

In second case

$$eV_s = 6 - 3 = 3 eV \Rightarrow V_s = 3 V.$$

$$\therefore$$
 V_{AC} = -3 V

108. If an electron in a hydrogen atom jumps from the 3rd orbit to the 2nd orbit, it emits a photon of wavelength λ . When it jumps from the 4th orbit to the 3rd orbit, the corresponding wavelength of the photon will be :-

(1)
$$\frac{20}{7}\lambda$$
 (2) $\frac{20}{13}\lambda$

$$(3) \quad \frac{16}{25}\lambda \qquad \qquad (4) \quad \frac{9}{16}\lambda$$

Ans. (1)

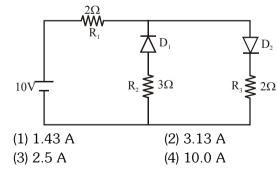
Sol. Transition : $3 \rightarrow 2 \Rightarrow$ Wavelength λ . Transition : $4 \rightarrow 3 \Rightarrow$ Wavelength $\lambda' = ?$

$$\frac{\frac{1}{\lambda} = R_H Z^2 \left(\frac{1}{2^2} - \frac{1}{3^2}\right)}{\frac{1}{\lambda'} = R_H Z^2 \left(\frac{1}{3^2} - \frac{1}{4^2}\right)} \Longrightarrow \frac{\lambda'}{\lambda} = \frac{20}{7} \Longrightarrow \lambda' = \frac{20\lambda}{7}$$

109. The half-life of a radioactive substance is 30 minutes. The time (in minutes) taken between 40% decay and 85% decay of the same radioactive substance is :- (1) 45 (2) 60 (3) 15 (4) 30

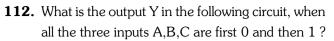
Ans. (2)

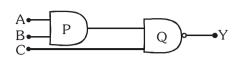
Sol. decay $40\% \rightarrow 85\%$ Remaining $60\% \rightarrow 15\%$


110. For CE transistor amplifier, the audio signal voltage across the collector resistance of $2 \text{ k}\Omega$ is 4 V. If the current amplification factor of the transistor is 100 and the base resistance is $1 \text{ k}\Omega$, then the input signal voltage is :-

Ans. (4)

$$\frac{V_0}{V_i} = \beta \frac{R_0}{R_i} \Longrightarrow \frac{4}{V_i} = 100 \times \frac{2 \times 10^3}{10^3}$$


$$\Rightarrow$$
 V_i = 20 mV


111. The given circuit has two ideal diodes connected as shown in the figure below. The current flowing through the resistance R_1 will be :-

Ans. (3)

:
$$i = \frac{10}{2+2} = 2.5 \text{ A}$$

(1) 1,0 (2) 1,1 (3) 0,1 (4) 0.0

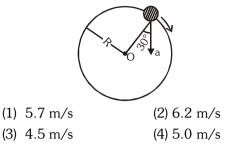
Ans. (1)

Sol.	$A \bullet P AB \\ B \bullet Q \bullet y = (\overline{AB})C$
	for $A = B = C = 0$; $y = 1$ for $A = B = C = 1$; $y = 0$

113. Planck's constant (h), speed of light in vacuum (c) and Newton's gravitational constant (G) are three fundamental constants. Which of the following combinations of these has the dimension of length?

(1)
$$\sqrt{\frac{hc}{G}}$$
 (2) $\sqrt{\frac{Gc}{h^{3/2}}}$ (3) $\frac{\sqrt{hG}}{c^{3/2}}$ (4) $\frac{\sqrt{hG}}{c^{5/2}}$

Ans. (3)


$$\begin{array}{l} x-y=0\\ 2x+3y+z=1\\ -x-2y-z=0 \end{array} \Rightarrow x = \frac{1}{2}; y = \frac{1}{2}; z = -\frac{3}{2} \\ \Rightarrow \ell \propto \frac{\sqrt{hG}}{c^{3/2}} \end{array}$$

114. Two cars P and Q start from a point at the same time in a straight line and their positions are represented by $x_p(t) = at + bt^2$ and $x_Q(t) = ft - t^2$. At what time do the cars have the same velocity?

(1)
$$\frac{a+f}{2(1+b)}$$
 (2) $\frac{f-a}{2(1+b)}$
(3) $\frac{a-f}{1+b}$ (4) $\frac{a+f}{2(b-1)}$

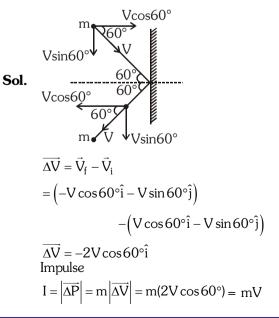
Ans. (2)

Sol. $x_P(t) = at + bt^2$ $v_P = a + 2bt$ $as v_P = v_Q$ a + 2bt = f - 2t $\Rightarrow t = \frac{f-a}{2(1+b)}$ 20 **115.** In the given figure, $a = 15 \text{ m/s}^2$ represents the total acceleration of a particle moving in the clockwise direction in a circle of radius R = 2.5 m at a given instant of time. The speed of the particle is :-

Ans. (1)

Sol.
$$a\cos 30^\circ = a_c = \frac{v^2}{R}$$

 $\Rightarrow v^2 = aR \times \frac{\sqrt{3}}{2} \Rightarrow v^2 = 32.47 \Rightarrow v \simeq 5.7 \text{ m/s}$


116. A rigid ball of mass m strikes a rigid wall at 60° and gets reflected without loss of speed as shown in the figure below. The value of impulse imparted by the wall on the ball will be :-

(3) mV

(1) $\frac{mV}{2}$ (2) $\frac{mV}{3}$

(4) 2mV

Ans. (3)



117. A bullet of mass 10g moving horizontally with a velocity of 400 ms⁻¹ strikes a wooden block of mass 2 kg which is suspended by a light inextensible string of length 5 m. As a result, the centre of gravity of the block is found to rise a vertical distance of 10 cm. The speed of the bullet after it emerges out horizontally from the block will be :-

(1)	120 ms-1	(2) 160 ms ⁻¹

(3) 100 ms^{-1} (4) 80 ms^{-1}

Ans. (1)

Applying momentum conservation

$$\frac{10}{1000} \times 400 + 0 = 2 \times v_1 + \frac{10}{1000} \times v_2$$
$$\implies 4 = 2v_1 + 0.01v_2 \qquad \dots \dots (1)$$

Applying work energy theorem for block

 $W = \Delta KE$

$$\Rightarrow 2 \times 10 \times 0.1 = \frac{1}{2} \times 2 \times v_1^2$$

 \Rightarrow v₁ = $\sqrt{2}$ = 1.4 m/s

Putting the value of v_1 is equation (2)

$$4 = 2 \times 1.4 + 0.01 v_2 \Rightarrow v_2 = 120 \text{ m/s}$$

- **118.** Two identical balls A and B having velocities of 0.5 m/s and -0.3 m/s respectively collide elastically in one dimension. The velocities of B and A after the collision respectively will be :-
 - (1) $-0.3\ \text{m/s}$ and $0.5\ \text{m/s}$
 - (2) 0.3 m/s and 0.5 m/s $\,$
 - (3) -0.5 m/s and 0.3 m/s
 - (4) 0.5 m/s and -0.3 m/s

Ans. (4)

Sol. Since both bodies are identical and collision is elastic. Therefore velocities will be interchanged after collision.

 v_A = –0.3 m/s and $\ v_B$ = 0.5 m/s

119. A particle moves from a point $(-2\hat{i}+5\hat{j})$ to

 $(4\hat{j}+3\hat{k})$ when a force of $(4\hat{i}+3\hat{j})\,N$ is applied.

How much work has been done by the force ?

Ans. (1)

Sol.
$$W = \vec{F} \cdot \vec{s} = (4\hat{i} + 3\hat{j}) \cdot [2\hat{i} - \hat{j} + 3\hat{k}] = 8 - 3 = 5J$$

120. Two rotating bodies A and B of masses m and 2m with moments of inertia I_A and I_B ($I_B > I_A$) have equal kinetic energy of rotation. If L_A and L_B be their angular momenta respectively, then :-

(1)
$$L_B > L_A$$
 (2) $L_A > L_B$

(3)
$$L_A = \frac{L_B}{2}$$
 (4) $L_A = 2L_B$

Ans. (1)

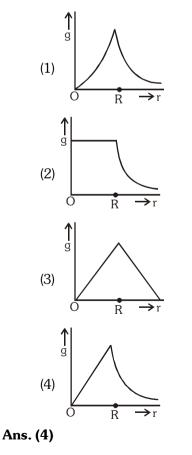
Sol.
$$K_A = K_B \Rightarrow \frac{L_A^2}{2I_A} = \frac{L_B^2}{2I_B}$$

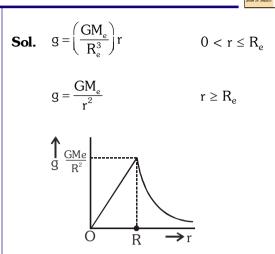
 $\therefore I_B > I_A \quad \therefore \ L_A^2 < L_B^2 \Rightarrow L_A < L_B$

 $\label{eq:121.} A \mbox{ solid sphere of mass m and radius } R \mbox{ is rotating about its diameter. A solid cylinder of the same mass and same radius is also rotating about its geometrical axis with an angular speed twice that of the sphere. The ratio of their kinetic energies of rotation (E_{sphere} / E_{cylinder}) will be :-$

Ans. (4) Sol.

$$\begin{split} \mathsf{E}_{\text{sphere}} &= \frac{1}{2} \mathsf{I}_{\text{s}} \omega^2 = \frac{1}{2} \times \frac{2}{5} \mathsf{M} \mathsf{R}^2 \times \omega^2 \\ \mathsf{E}_{\text{cylinder}} &= \frac{1}{2} \mathsf{I}_{\text{c}} (2\omega)^2 = \frac{1}{2} \times \frac{\mathsf{M} \mathsf{R}^2}{2} \times 4\omega^2 \\ \frac{\mathsf{E}_{\text{sphere}}}{\mathsf{E}_{\text{cylinder}}} &= \frac{1}{5} \end{split}$$


122. A light rod of length ℓ has two masses m_1 and m_2 attached to its two ends. The moment of inertia of the system about an axis perpendicular to the rod and passing through the centre of mass is :-


(1)
$$(m_1 + m_2)\ell^2$$
 (2) $\sqrt{m_1m_2}\ell^2$

(3)
$$\frac{m_1m_2}{m_1+m_2}\ell^2$$
 (4) $\frac{m_1+m_2}{m_1m_2}\ell^2$

Ans. (3)

123. Starting from the centre of the earth having radius R, the variation of g (acceleration due to gravity) is shown by :-

124. A satellite of mass m is orbiting the earth (of radius R) at a height h from its surface. The total energy of the satellite in terms of g_0 , the value of acceleration due to gravity at the earth's surface, is :-

(1)
$$\frac{2mg_0R^2}{R+h}$$
 (2) $-\frac{2mg_0R^2}{R+h}$

(3)
$$\frac{mg_0R^2}{2(R+h)}$$
 (4) $-\frac{mg_0R^2}{2(R+h)}$

Ans. (4)

Sol. Total energy =
$$-\frac{GM_em}{2(R+h)}$$

$$\therefore \quad g_0 = \frac{GM_e}{R^2} \qquad \Rightarrow \qquad M_e = \frac{g_0R^2}{G}$$

$$\therefore \text{ Energy} = -\frac{\text{mg}_0 \text{R}^2}{2(\text{R} + \text{h})}$$

125. A rectangular film of liquid is extended from (4 cm \times 2 cm) to (5 cm \times 4 cm). If the work done is 3×10^{-4} J, the value of the surface tension of the liquid is :-

(3) 0.250 Nm⁻¹ (4) 0.125 Nm⁻¹

Ans. (4)

Sol. $W = T(2\Delta A)$

$$\Rightarrow T = \frac{W}{2\Delta A} = \frac{3 \times 10^{-4}}{2 \times 12 \times 10^{-4}} = 0.125 \text{ Nm}^{-1}$$

126. Three liquids of densities ρ_1 , ρ_2 and ρ_3 (with $\rho_1 > \rho_2 > \rho_3$), having the same value of surface tension T, rise to the same height in three identical capillaries. The angles of contact θ_1 , θ_2 and θ_3 obey:-

(1)
$$\frac{\pi}{2} < \theta_1 < \theta_2 < \theta_3 < \pi$$

(2)
$$\pi > \theta_1 > \theta_2 > \theta_3 > \frac{\pi}{2}$$

$$(3) \quad \frac{\pi}{2} > \theta_1 > \theta_2 > \theta_3 \ge 0$$

$$(4) \ 0 \leq \theta_1 < \theta_2 < \theta_3 < \frac{\pi}{2}$$

Ans. (4)

Sol. $h = \frac{2T\cos\theta}{\rho gr}$

as r, h, T are same

$$\Rightarrow \frac{\cos \theta}{\rho} = \text{constant}$$

$$\Rightarrow \frac{\cos \theta_1}{\rho_1} = \frac{\cos \theta_2}{\rho_2} = \frac{\cos \theta_3}{\rho_3}$$

as $\rho_1 > \rho_2 > \rho_3$
$$\Rightarrow \cos \theta_1 > \cos \theta_2 > \cos \theta_3$$

$$\Rightarrow \theta_1 < \theta_2 < \theta_3$$

As water rises $\Rightarrow \theta$ must be acute
So, $0 \le \theta_1 < \theta_2 < \theta_3 < \pi/2$

- 127. Two identical bodies are made of a material for which the heat capacity increases with temperature. One of these is at 100 °C, while the other one is at 0°C. If the two bodies are brought into contact, then, assuming no heat loss, the final common temperature is :-
 - (1) less than 50 $^{\circ}\mathrm{C}$ but greater than 0 $^{\circ}\mathrm{C}$
 - (2) 0 °C
 - (3) 50 ℃
 - (4) more than 50 °C

Ans. (4)

Sol. Let θ be the final common temperature. Further, let s_c and s_h be the average heat capacities of the cold and hot (initially) bodies respectively (where $s_c < s_h$ given)

From, principle of calorimetry,

heat lost = heat gained $\mathbf{s}_{0}(100^{\circ}\mathrm{C} - \theta) = \mathrm{s}_{c}\theta$

$$\therefore \quad \theta = \frac{s_h}{(s_h + s_c)} \times 100^{\circ}C = \frac{100^{\circ}C}{\left(1 + \frac{s_c}{s_h}\right)}$$

$$\therefore \quad s_c / s_h < 1 \qquad \therefore \quad 1 + s_c / s_h < 2$$

$$\therefore \quad \theta > \frac{100^{\circ}C}{2} \quad \text{or} \quad \theta > 50^{\circ}C$$

128. A body cools from a temperature 3T to 2T in 10 minutes. The room temperature is T. Assume that Newton's law of cooling is applicable. The temperature of the body at the end of next 10 minutes will be :-

(1)
$$\frac{4}{3}$$
T (2) T (3) $\frac{7}{4}$ T (4) $\frac{3}{2}$ T

Ans. (4)

Sol. Newton's laws of cooling

$$\frac{T_1 - T_2}{t} = k\left(\frac{T_1 + T_2}{2} - T\right)$$

$$\frac{3T - 2T}{10} = k\left(\frac{5T - 2T}{2}\right) \Rightarrow \frac{T}{10} = k\left(\frac{3T}{2}\right) \dots (i)$$

$$\frac{2T - T'}{10} = k\left(\frac{2T + T'}{2} - T\right)$$

$$\Rightarrow \frac{2T - T'}{10} = k\left(\frac{T'}{2}\right) \dots (ii)$$
By solving (i) and (ii)
$$T' = \frac{3}{2}T$$

129. One mole of an ideal monatomic gas undergoes a process described by the equation PV^3 = constant. The heat capacity of the gas during this process is

(1) 2 R (2) R (3)
$$\frac{3}{2}$$
 R (4) $\frac{5}{2}$ R

Ans. (2)

Sol. PV^x = constant (Polytropic process) Heat capacity in polytropic process is given by

$$C = C_{V} + \frac{R}{1 - x}$$

Given that $PV^3 = constant \Rightarrow x = 3$...(1) also gas is monoatomic f = 3 ...(2) by formula

$$C = \frac{fR}{2} + \frac{R}{1-x}$$
$$C = \frac{3}{2}R - \frac{R}{2} = R$$

130. The temperature inside a refrigerator is t_2 °C and the room temperature is t_1 °C. The amount of heat delivered to the room for each joule of electrical energy consumed ideally will be :-

(1)
$$\frac{t_2 + 273}{t_1 - t_2}$$
 (2) $\frac{t_1 + t_2}{t_1 + 273}$
(3) $\frac{t_1}{t_1 - t_2}$ (4) $\frac{t_1 + 273}{t_1 - t_2}$

Ans. (4)

Sol. Heat delivered = Q_1

$$COP(\beta) = \frac{t_2 + 273}{t_1 - t_2} = \frac{Q_2}{W} = \frac{Q_1 - W}{W} = \frac{Q_1}{W} - 1$$
$$\Rightarrow \frac{Q_1}{W} = 1 + \frac{t_2 + 273}{t_1 - t_2} = \frac{t_1 + 273}{t_1 - t_2}$$

131. A given sample of an ideal gas occupies a volume V at a pressure P and absolute temperature T. The mass of each molecule of the gas is m. Which of the following gives the density of the gas ?

(1)	P/(kTV)	(2) mkT
(3)	P/(kT)	(4) Pm/(kT)

Ans. (4)

 $\frac{P}{\rho} = \frac{RT}{M_{\rm m}}$ (Gas equation)

$$\Rightarrow \rho = \frac{PM_{w}}{RT} = \frac{P \times (mN_{A})}{kN_{A}T} = \frac{Pm}{kT}$$

132. A body of mass m is attached to the lower end of a spring whose upper end is fixed. The spring has negligible mass. When the mass m is slightly pulled down and released, it oscillates with a time period of 3s. When the mass m is increased by 1 kg, the time period of oscillations becomes 5 s. The value of m in kg is :-

(1)
$$\frac{16}{9}$$
 (2) $\frac{9}{16}$
(3) $\frac{3}{4}$ (4) $\frac{4}{3}$

Ans. (2)

Sol.
$$T = 2\pi \sqrt{\frac{m}{k}}$$

 $3 = 2\pi \sqrt{\frac{m}{k}}$...(1)
 $5 = 2\pi \sqrt{\frac{m+1}{k}}$...(2)
 $\frac{(1)^2}{(2)^2} \Rightarrow \frac{9}{25} = \frac{m}{m+1} \Rightarrow m = \frac{9}{16}$

133. The second overtone of an open organ pipe has the same frequency as the first overtone of a closed pipe L metre long. The length of the open pipe will be

(1)
$$\frac{L}{2}$$
 (2) 4 L (3) L (4) 2 L

Ans. (4)

Sol. For second overtone (3rd harmonic) in open organ pipe,

$$\frac{3\lambda}{2} = \ell_0 \quad \Rightarrow \quad \lambda = \frac{2\ell_0}{3}$$

for first overtone (3rd harmonic) in closed organ pipe,

$$\frac{3\lambda}{4} = \ell_c \implies \lambda = \frac{4\ell_c}{3} = \frac{4L}{3}$$

So, $\frac{2\ell_0}{3} = \frac{4L}{3} \implies \ell_0 = 2L$

134. Three sound waves of equal amplitudes have frequencies (n – 1), n, (n + 1). They superimpose to give beats. The number of beats produced per second will be :-

Ans. (2)

- **Sol.** Net beat frequency = LCM of individual beat frequencies = LCM of [(n, n-1), (n, n+1), (n-1, n+1)]= LCM of (1, 1, 2)= 2 Hz So, no. of beats per second = 2
- **135.** An electric dipole is placed at an angle of 30° with an electric field intensity 2×10^{5} N/C. It experiences a torque equal to 4 Nm. The charge on the dipole, if the dipole length is 2 cm, is :-

(1) 5 mC (2) 7 μ C (3) 8 mC (4) 2 mC Ans. (4)

Sol. $\tau = PE \sin\theta$ $\tau = q\ell E \sin\theta$ $4 = q \times 2 \times 16^{-3} \times 2 \times 10^5 \sin 30^\circ$ $\Rightarrow q = 2 mC$

NEET-II (2016) TEST PAPER WITH ANSWER & SOLUTIONS (HELD ON SUNDAY 24th JULY, 2016)

136. Hot concentrated sulphuric acid is a moderately strong oxidizing agent. Which of the following reactions does not show oxidizing behaviour ?

$$(1) C + 2H_2SO_4 \rightarrow CO_2 + 2SO_2 + 2H_2$$

(2) $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$

$$(3) \operatorname{Cu} + 2\operatorname{H}_2\operatorname{SO}_4 \to \operatorname{CuSO}_4 + \operatorname{SO}_2 + 2\operatorname{H}_2\operatorname{O}$$

4)
$$3S + 2H_2SO_4 \rightarrow 3SO_2 + 2H_2O_4$$

Ans. (2)

- **Sol.** $CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$ In this reaction, oxidation number of none of the atom is not changed. Hence H_2SO_4 is not acting as oxidising agent.
- **137.** Which of the following pairs of d-orbitals will have electron density along the axes ?

(1) $d_{z^2}, d_{x^2-y^2}$	(2) $d_{xy}, d_{x^2-y^2}$
(3) d_{z^2}, d_{xz}	(4) d_{xz} , d_{yz}

Ans. (1)

- **Sol.** dz^2 and dx^2-y^2 has electron density concentrated on the axis.
- **138.** The correct geometry and hybridization for XeF_4 are:
 - (1) Planar triangle, sp^3d^3
 - (2) square planar, sp^3d^2
 - (3) octahedral, sp^3d^2
 - (4) trigonal bipyramidal, sp³d

Ans. (3)

Sol. XeF₄, AB₄L₂ \rightarrow sp³d²

 \rightarrow geometry \rightarrow octahedral

 \rightarrow shape \rightarrow square planar

- **139.** Among the following which one is a wrong statement?
 - (1) SeF_4 and CH_4 have same shape
 - (2) I_3^+ has bent geometry
 - (3) PH_5 and $BiCl_5$ do not exist
 - (4) $p\pi$ -d π bonds are present in SO₂

Ans. (1)

8

- **Sol.** (1) SeF₄ -sp³d, lp = 1, shape = see-saw CH_4 -sp³, lp = 0, shape =tetrahedral
 - (2) I_3^+ -sp³, lp =2, shape = bent/angular
 - (3) $PH_5 = d$ -orbital contraction absent $BiCl_5 = due$ to inert pair effect (Bi^{+5} act as OA, Cl^- act as RA)

$$(4) SO_2 : O=S=O$$

 $P\pi$ -d π , $P\pi$ - $P\pi$ both type bonds are present

- **140.** The correct increasing order of trans-effect of the following species is :
 - (1) $Br^- > CN^- > NH_3 > C_6H_5^-$
 - (2) $CN^- > Br^- > C_6H_5^- > NH_3$
 - (3) $NH_3 > CN^- > Br > C_6H_5^-$
 - (4) $CN^- > C_6H_5^- > Br^- > NH_3$

Ans. (4)

- **Sol.** Trans effect order $C\overline{N} > C_6H_5^- > Br^- > NH_3$
- **141.** Which one of the followng statements related to lanthanons is **incorrect** ?
 - (1) All the lanthanons are much more reactive than aluminium
 - (2) Ce(+4) solutions are widely used as oxidizing agent in volumetric analysis
 - (3) Europium shows +2 oxidation state.
 - (4) The basicity decreases as the ionic radius decreases from Pr to Lu.

Ans. (1)

- **Sol.** (1) Lanthanon's are less reactive than aluminium due to high IP (Lanthenoid contraction)
 - (2) Ce^{+4} is good oxidising agent and easily converted into Ce^{+3}
 - (3) Eu(63) = $4f^7 5d^0 6s^2$, Eu⁺² = $4f^7$
 - (4) In lanthenoids series 'Ce' to Lu ionic radius regular decreases and covalent character increase, basic character of hydroxide decrease
- **142.** Jahn-Teller effect **not** observed in high spin complexes of :-

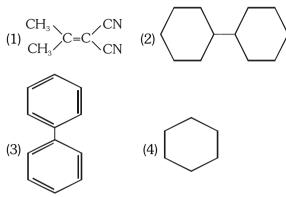
(1)
$$d^4$$
 (2) d^9 (3) d^7 (4) d^8

Ans. (4)

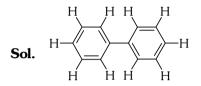
Sol. John Teller effect explain axial distortion in perfect octahedral geometry. It is present in d⁴ high spin, d⁷ low spin and d⁹ configuations which have odd number of electrons in eg set.

A weak John Teller effect in also present in d^7 high spin complex which has odd number of electrons in the set.

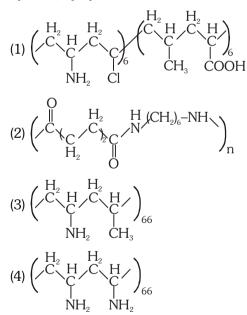
- **143.** Which of the following can be used as the halide component for Friedel-Crafts reaction ?
 - (1) Chloroethene(2) Isopropyl chloride(3) Chlorobenzene(4) Bromobenzene


Ans. (2)

Sol.
$$()$$
 + CH-CH-Cl Anhy AlCl₃ $()$ + CH-CH-Cl CH₃ $()$ + CH₃

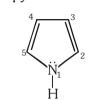

But in chlorobenzene, Bromobenzene, chloroethene lone pair of halogen are delocalised with π bonds, so attain double bond character.

144. In which of the following molecules, all atoms are coplanar ?



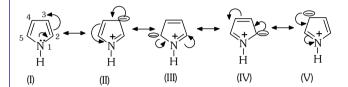
Ans. (3)

All carbons are sp² hybridised


145. Which one of the following structures represents nylon 6,6 polymer ?

Ans. (2) Sol.

HOOC
$$-(CH_2)_4$$
 $-COOH + H_2N - (CH_2)_6 - NH_2$
Adipic acid Hexamethylene diamine
Polymerisation
 O O O
 $-C - (CH_2)_4 - C - NH - (CH_2)_6 - NH - \frac{1}{n}$


146. In pyrrole

The electron density is maximum on :-

(3) 2 and 3 (4) 3 and 4

Ans. (2)

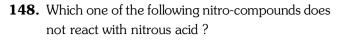
Maximum electron density at (2) and (5) as resonating structures III & IV are more stable than (II) & (V) so are major contributor.

147. Which of the following compounds shall not produced propene by reaction with HBr followed by elimination of direct only elimination reaction ?

$$(1) H_2C = C = O$$

(2)
$$\begin{array}{c} H_2 \\ H_3 C - C - C H_2 Br \end{array}$$

$$(3) \begin{array}{c} H_2 C - C H_2 \\ C \\ H_2 \end{array}$$


Ans. (1)

Sol.

$$\begin{array}{c} H_2C-CH_2 \xrightarrow{HBr} CH_3CH_2CH_2 \xrightarrow{Elimination} H_3C-CH=CH_2\\C\\H_2 & Br \end{array}$$

 $CH_{3}-CH_{2}-CH_{2}-OH \xrightarrow{HBr} \xrightarrow{Elimination} H_{3}C-CH=CH_{2}$

(1)
$$\begin{array}{c} H_3C \\ H_3C - C - NO_2 \\ H_3C \end{array}$$

(2)
$$\begin{array}{c} CH_{3} \\ C \\ H_{3}C \\ H_{NO_{2}} \\ H_{NO_{2}} \\ \end{array}$$
(3)
$$\begin{array}{c} H_{3}C \\ H_{2} \\ H_{2} \\ H_{2} \\ NO_{2} \\ \end{array}$$
(4)
$$\begin{array}{c} H_{3}C \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ H_{2} \\ NO_{2} \\ \end{array}$$

Ans. (1)

- Sol. 3°-Nitro compound does not react with HNO_2 because of absence of $\alpha\text{-}H$
- **149.** The central dogma of molecular genetics states that the genetic information flows from :-
 - (1) DNA \rightarrow RNA \rightarrow Proteins
 - (2) DNA \rightarrow RNA \rightarrow Carbohydrates
 - (3) Amino acids \rightarrow Proteins \rightarrow DNA
 - (4) DNA \rightarrow Carbohydrates \rightarrow Proteins

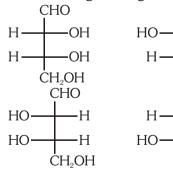
Ans. (1)

- **Sol.** DNA $\xrightarrow{\text{Transcription}}$ RNA $\xrightarrow{\text{Translation}}$ Protein
- **150.** The **correct** corresponding order names of four aldoses with configuration given below

CHO

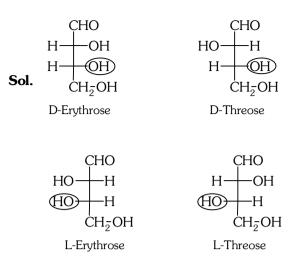
—Н

CH₂OH

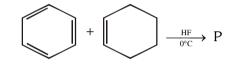

CHO

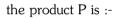
-OH

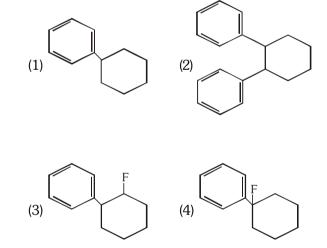
-OH

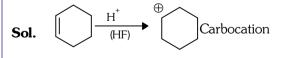

—Н

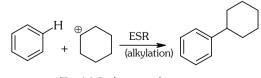
ĊH₂OH



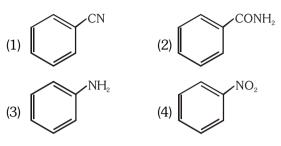

respectively, is :-

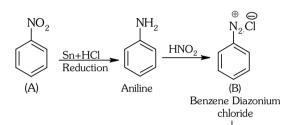

(1) L-erythrose, L-threose, D-erythrose, D-threose
(2) D-erythrose, D-threose, L-erythrose, L-threose
(3) L-erythrose, L-threose, L-erythrose, D-threose
(4) D-threose, D-erythrose, L-threose, L-erythrose
Ans. (2)


151. In the given reaction



Ans. (1)




[Friedel Craft reaction]

152. A given nitrogen-containing aromatic compound A reacts with Sn/HCl, followed by HNO_2 to give an unstable compound B. B, on treatment with phenol, forms a beatiful coloured compound C with the molecular formula $C_{12}H_{10}N_2O$. The structure of compound A is :-

Ans. (4)

Sol.

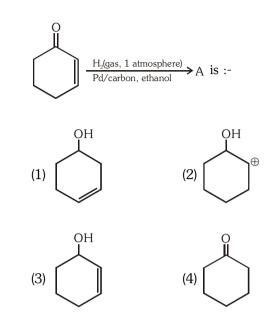
p-Hydroxy azo benzene (red colour dye)

153. Consider the reaction

 $CH_{3}CH_{2}CH_{2}Br + NaCN \rightarrow CH_{3}CH_{2}CH_{2}CN + NaBr$

This reaction will be the fastest in

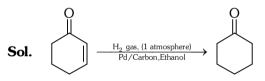
- (1) N,N'-dimethylformamide (DMF)
- (2) water
- (3) ethanol
- (4) methanol

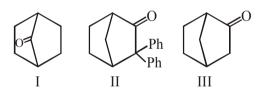

Ans. (1)

Sol. CH_3 - CH_2 - CH_2Br + NaCN \rightarrow $CH_3CH_2CH_2CN$ + NaBr

This reaction follows by S_N^2 path, which is favoured by polar aprotic solvents like DMF, DMSO, etc.

DMF (Dimethyl formamide) H=C=N=Me

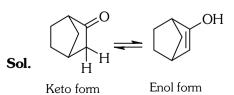

154. The **correct** structure of the product A formed in the reaction


Ans. (4)

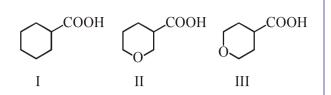
Ph—OH

ΩН

155. Which among the given molecules can exhibit tautomerism ?



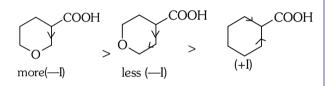
- (1) Both I and II
 - (4) Both I and III


(2) Both II and III

Ans. (3)

(3) III only

156. The **correct** order of strengths of the carboxylic acids



is

(1) III > II > I (2) II > I > III(3) I > II > III (4) II > III > I

Ans. (4)

Sol. Acidic Strength

157. The compound that will react most readily with gaseous bromine has the formula

(1) C_4H_{10} (2) C_2H_4 (3) C_3H_6 (4) C_2H_2

Ans. (3)

Sol. Gaseous Bromine reacts with alkene to give allylic substituted product by free radical mechanism

$$CH_{3}-CH=CH_{2} \xrightarrow{Br_{2}(gas)} H_{2}C-C \xrightarrow{H} CH_{2}$$

- **158.** Which one of the following compounds shows the presence of intramolecular hydrogen bond ?
 - (1) Cellulose
 - (2) Concentrated acetic acid
 - (3) H₂O₂
 - (4) HCN

Ans. (1)

Sol. In acetic acid, H₂O₂ and HCN inter molecular hydrogen bond present but in cellulose intramolecular hydrogen bond present.

- **159.** The molar conductivity of a 0.5 mol/dm³ solution of AgNO₃ with electrolytic conductivity of 5.76×10^{-3} S cm⁻¹ at 298 K is
 - (1) 0.086 S cm²/mol
 - (2) 28.8 S cm²/mol
 - (3) 2.88 S cm²/mol
 - (4) 11.52 S cm²/mol

Ans. (4)

Sol. C = 0.5 mol / dm³ κ = 5.76 × 10⁻³ S cm⁻¹ T = 298 K

$$\lambda_{\rm m} = \frac{\kappa \times 1000}{M} = \frac{5.76 \times 10^{-3}}{0.5} = 11.52 \ Scm^2/mol$$

- $\label{eq:2.1} \textbf{160.} \ \ \ The \ decomposition \ of \ phosphine \ (PH_3) \ on \ tungsten \ at \ low \ pressure \ is \ a \ first-order \ reaction. \ It \ is \ because \ the$
 - (1) rate is independent of the surface coverage
 - (2) rate of decomposition is very slow
 - (3) rate is proportional to the surface coverage
 - (4) rate is inversely proportional to the surface coverage

Ans. (3)

- **Sol.** The decomposition of PH_3 on tungsten at low pressure is a first order reaction because rate is proportional to the surface coverage.
- 161. The coagulation values in millimoles per litre of the electrolytes used for the coagulation of As_2S_3 are given below :

I. (NaCl) = 52, II. (BaCl₂) =
$$0.69$$
,

III.
$$(MgSO_4) = 0.22$$

The **correct** order of their coagulating power is

(1) III > II > I	(2) III > I > II
(3) I > II > III	(4) $II > I > III$

Ans. (1)

Sol. Coagulation power $\propto \frac{1}{\text{coagulation value}}$

So, the order is III > II > I

- 162. During the electrolysis of molten sodium chloride, the time required to produce 0.10 mol of chlorine gas using a current of 3 amperes is
 - (1) 220 minutes (2) 330 minutes
 - (3) 55 minutes (4) 110 minutes

Ans. (4)

Sol. $2Cl^{-} \rightarrow Cl_2(g) + 2e^{-}$

$$W = \frac{E}{96500} \times it$$

$$0.1 \times 71 = \frac{35.5}{96500} \times 3 \times t$$
(sec)
t (s) = 6433.33 sec
t(min) = 107.22 min ≈ 110 min

- **163.** How many electrons can fit in the orbital for which n = 3 and l = 1?
 - (1) 10 (2) 14 (3) 2 (4) 6
- Ans. (3)
- **Sol.** n=3, $l=1 \Rightarrow 3p$ Total 2 electron can fit in the orbital of 3p
- $\label{eq:164.} \ensuremath{\text{For a sample of perfect gas when its pressure is} \\ \ensuremath{\text{changed isothermally from }} p_i \ensuremath{ \text{ to }} p_f, \ensuremath{ \text{the entropy}} \\ \ensuremath{\text{change is given by}} \end{cases}$

(1)
$$\Delta S = nRT \ln\left(\frac{p_f}{p_i}\right)$$
 (2) $\Delta S = RT \ln\left(\frac{p_i}{p_f}\right)$

(3)
$$\Delta S = nR \ln\left(\frac{p_f}{p_i}\right)$$
 (4) $\Delta S = nR \ln\left(\frac{p_i}{p_f}\right)$

Ans. (4)

$$\begin{split} \textbf{Sol.} \quad \Delta S = nC_{pm}\ell n \frac{T_f}{T_i} + nR\ell n \frac{P_i}{P_f} \\ & \text{For isothermal } T_i = T_f, \ ln1 = 0 \\ & \Delta S = nR\ell n \frac{P_i}{P_f} \end{split}$$

165.	The van't Hoff factor (i) for a dilute aqueous solution
	of the strong electrolyte barium hydroxide is

(1) 2 (2) 3

(3) 0 (4) 1

Ans. (2)

Sol. $Ba(OH)_2$ is strong electrolyte, so its 100% dissociation occurs in solution

 $Ba(OH)_2 \rightarrow Ba^{+2}(aq) + 2OH^{-}(aq)$

Van't Hoff factor = total number of ions present in solution i =3 $\,$

166. The percentage of pyridine (C_5H_5N) that forms pyridinium ion ($C_5H_5N^+H$) in a 0.10 M aqueous pyridine solution (K_b for $C_5H_5N = 1.7 \times 10^{-9}$) is

(1) 0.77%	(2) 1.6%
(3) 0.0060%	(4) 0.013%

Ans. (4)

Sol. Pyridine $(C_5H_5H_5N)$ is a weak base

$$K_b = C\alpha^2$$

$$\alpha = \sqrt{\frac{1.7 \times 10^{-9}}{0.1}}$$

$$\alpha = 1.30 \times 10^{-4}$$

 $\%\alpha = 1.30\!\times\!10^{-4}\!\times\!100$

 $\% \alpha = 0.013\%$

167. In calcium fluoride, having the fluorite structure, the coordination numbers for calcium ion (Ca^{2+}) and fluoride ion (F^{-}) are

(1) 8 and 4	(2) 4 and 8

(3) 4 and 2 (4) 6 and 6

Ans. (1)

Sol. In CaF₂, the coordination numbers for $Ca^{+2} = 8$ $F^{-} = 4$

168. If the E_{cell}° for a given reaction has a negative value, which of the following gives the **correct** relationships for the values of ΔG° and K_{eq} ?

- (1) $\Delta G^{\circ} < 0; K_{eq} > 1$
- (2) $\Delta G^{\circ} < 0; K_{eq} < 1$
- (3) $\Delta G^{\circ} > 0; K_{eq} < 1$
- (4) $\Delta G^{\circ} > 0; K_{eq} > 1$

Ans. (3)

Sol. $:: E_{cell}^0 = -ve$

- $\therefore \Delta G^{0} = -nF \ E_{cell}^{0}$ $\Delta G^{0} = +ve \Rightarrow \Delta G > 0$ $\therefore \Delta G^{0} = -2.303RT \log K_{eq}$ $\therefore K_{eq} < 1$
- **169.** Which one of the following is **incorrect** for ideal solution ?
 - (1) $\Delta P = Pobs P_{calculated by Raoult's law} = 0$
 - (2) $\Delta G_{mix} = 0$
 - (3) $\Delta H_{mix} = 0$
 - (4) $\Delta U_{mix} = 0$

Ans. (2)

Sol. For an ideal solution $\Delta H_{mix} = 0$

- $$\begin{split} \Delta U_{mix} &= 0\\ \Delta S_{mix} \neq 0\\ \text{According to } \Delta G_{mix} &= \Delta H_{mix} T\Delta S_{mix}\\ \Rightarrow \Delta G_{mix} \neq 0\\ \text{Incorrect answer, is } \Delta G_{mix} = 0 \end{split}$$
- **170.** The solubility of AgCl(s) with solubility product 1.6×10^{-10} in 0.1 M NaCl solution would be

(1) $1.6 \times 10^{-11} \text{ M}$

- (2) zero
- (3) 1.26×10^{-5} M
- (4) 1.6×10^{-9} M

Ans. (4)

			And to success KOTA (RAJASTHAN)		
Sol.	$NaCl(aq) \rightarrow 0.1M \\ 0$	Na ⁺ (aq + 0 0.1M	Cl ⁻ (aq) 0 0.1 + S		
	$\begin{array}{c} AgCl(s) \\ a \\ a - S \end{array}$	$Ag^{+}(aq) + 0$ S	$Cl^{-}(aq)$ 0 S+0.1		
$\begin{split} &K_{sp} = 1.6 \times 10^{-10} = [Ag^+] \ [CF] = S \ (0.1 + S) \\ &\because K_{sp} \ \text{is small}, S \ \text{is neglected with respect to} \ 0.1 \ M \\ &1.6 \times 10^{-10} = S \times 0.1 \\ &S = 1.6 \times 10^{-9} \ M \end{split}$					
171. Suppose the elements X and Y combine to form					

 $\label{eq:171. Suppose the elements X and Y combine to form two compounds XY_2 and X_3Y_2. When 0.1 mole of XY_2 weighs 10 g and 0.05 mole of X_3Y_2 weighs 9 g, the atomic weights of X and Y are$

(1) 20, 30	(2) 30, 20
(3) 40, 30	(4) 60, 40

Ans. (3)

Sol. Let atomic weight of x is A_x and y is A_y

$$n_{xy_2} = 0.1 = \frac{10}{A_x + 2A_y}$$
$$A_x + 2A_y = 100 \dots (1)$$
$$n_{x_3y_2} = 0.05 = \frac{9}{3A_x + 2A_y}$$
$$3A_x + 2A_y = 180 \dots (2)$$

 $3A_x + 2A_y = 180 \dots (2)$ on solving eq. (1) and (2) $A_x = 40, A_y = 30$

172. The number of electrons delivered at the cathode during electrolysis by a current of 1 ampere in 60 seconds is (charge on electron = 1.60×10^{-19} C)

(1) 3.75×10^{20}	(2) 7.48 ×10 ²³

(3) 6×10^{23} (4) 6×10^{20}

Ans. (1)

Sol. Q = ne i.t = n.e $n = \frac{1 \times 60}{1.6 \times 10^{-19}} = 3.75 \times 10^{20} \text{ electrons}$

14 -

173. Boric acid is an acid because its molecule	173.	Boric	acid	is	an	acid	because	its	molecule	
--	------	-------	------	----	----	------	---------	-----	----------	--

- (1) accepts OH^- from water releasing proton
- (2) combines with proton from water molecule
- (3) contains replaceable H^+ ion
- (4) gives up a proton

Ans. (1)

Sol. $B(OH)_3 + H_2O \rightleftharpoons [B(OH)_4]^- + H^+$

174. AlF_3 is soluble in HF only in presence of KF. It is due to the formation of

(1) AlH ₃	(2) K[AlF ₃ H]
(3) K ₃ [AlF ₃ H ₃]	(4) K ₃ [AlF ₆]

Ans. (4)

Sol. $AlF_3 + 3KF \rightarrow K_3[AlF_6]$

- **175.** Zinc can be coated on iron to produce galvanized iron but the reverse is not possible. It is because
 - (1) zinc has lower negative electrode potential than iron
 - (2) zinc has higher negative electrode potential than iron
 - (3) zinc is lighter than iron
 - (4) zinc has lower melting point than iron

Ans. (2)

- **Sol.** Zinc has higher negative electrode potential than iron, so iron cannot be coated on zinc.
- 176. The suspension of slaked lime in water is known as
 - (1) milk of lime
 - (2) aqueous solution of slaked lime
 - (3) limewater
 - (4) quicklime

Ans. (1)

Sol. Aqueous solution of slaked lime \Rightarrow lime water Suspension solution of slaked lime \Rightarrow milk of lime 177. The hybridizations of atomic orbitals of nitrogen in NO₂⁺, NO₃⁻ and NH₄⁺ respectively are
(1) sp, sp² and sp³
(2) sp², sp and sp³
(3) sp, sp³ and sp²
(4) sp², sp³ and sp

Ans. (1)

Sol. $NO_2^+ = sp$	$NO_2^+ = sp$	Linear		
	$NO_3^- = sp^2$	Trigonal planar		
	$NH_4^+ = sp^3$	Tetrahedral		

178. Which of the following fluoro-compounds is most likely to behave as a Lewis base ?

(1) CF ₄	(2) SiF ₄

(3) BF ₃	(4) PF ₃
---------------------	---------------------

Ans. (4)

- **Sol.** PF_3 act as Lewis base due to present of lone pair on P atom.
- **179.** Which of the following pairs of ions is isoelectronic and isostructural ?
 - (1) SO_3^{2-} , NO_3^{-} (2) ClO_3^{-} , SO_3^{2-}
 - (3) CO_3^{2-} , NO_3^{-} (4) CIO_3^{-} , CO_3^{2-}

Ans. (2 & 3)

- **Sol.** (2) In SO_{3}^{2-} , CIO_{3}^{-} , No. of electrons = 42,
 - Shape : Pyramidal
 - (3) In CO_3^{-2} , NO_3^{-} , No. of electrons = 32 Shape : trigonal planar
- **180.** In context with beryllium, which one of the following statements is **incorrect** ?
 - (1) Its salts rarely hydrolyze.
 - (2) Its hydride is electron-deficient and polymeric.
 - (3) It is rendered passive by nitric acid.
 - (4) it forms Be_2C .

Ans. (1)

Sol. Be salts are covalent nature, so easily hyrolysed.